题目内容
【题目】直线y=﹣ x+4与x轴交于点A,与y轴交于点B,菱形ABCD如图放置在平面直角坐标系中,其中点D在x轴负半轴上,直线y=x+m经过点C,交x轴于点E.
①请直接写出点C、点D的坐标,并求出m的值;
②点P(0,t)是线段OB上的一个动点(点P不与0、B重合),
经过点P且平行于x轴的直线交AB于M、交CE于N.设线段MN的长度为d,求d与t之间的函数关系式(不要求写自变量的取值范围);
③当t=2时,线段MN,BC,AE之间有什么关系?(写出过程)
【答案】解:①∵直线y=﹣ x+4与x轴交于点A,与y轴交于点B,
∴点A的坐标为(3,0)点B的坐标为(0,4),
∵四边形ABCD是菱形,
∵直线y=x+m经过点C,
∴m=9,
②∵MN 经过点P(0,t)且平行于x轴,
∴可设点M的坐标为(xM , t),点N的坐标为(xN , t),
∵点M在直线AB上,
直线AB的解析式为y=﹣ x+4,
∴t=﹣ xM+4,得xM=﹣ t+3,
同理点N在直线CE上,直线CE的解析式为y=x+9,
∴t=xN+9,得xN=t﹣9,
∵MN∥x轴且线段MN的长度为d,
∴d=xM﹣xN=﹣ t+3﹣(t﹣9)=﹣ t+12(0≤t≤4)
③MN= (BC+AE).
理由:当t=2时,P(0,2),
∴OP=2,
∵OB=4,
∴点P是OB中点,
∵MN∥x轴,
∴MN是梯形ABCE的中位线,
∴MN= (BC+AE).
【解析】①由直线的解析式可求出A和B点的坐标,再根据菱形的性质即可求出点C、点D的坐标,把点C的坐标代入直线y=x+m即可求出m的值;②设点M的坐标为(xM , t),点N的坐标为(xN , t),首先求出xM=﹣ t+3,再求出xN=t﹣9,进而得到d=xM﹣xN=﹣ t+3﹣(t﹣9)=﹣ t+12;③先求出点P的坐标,进而得出点P是OB中点,即可得出MN是梯形ABCE的中位线即可得出结论.
【题目】二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣3 | ﹣2 | ﹣3 | ﹣6 | ﹣11 | … |
则该函数图象的对称轴是( )
A.直线x=﹣3
B.直线x=﹣2
C.直线x=﹣1
D.直线x=0