题目内容
101、已知二次函数y=ax2+bx+c(a,b,c是常数),x与y的部分对应值如下表,则当x满足的条件是
0或2
时,y=0;当x满足的条件是0<x<2
时,y>0.x | -2 | -1 | 0 | 1 | 2 | 3 |
y | -6 | -6 | 0 | 2 | 0 | -6 |
分析:观察表中数据即可求出y=0时x的值,再由表中数据可知抛物线y=ax2+bx+c与x轴的交点为(0,0)、(2,0),然后画出草图即可确定y>0是x的取值范围.
解答:解:观察表中数据,可知
y=0时,x=0或2,
即抛物线y=ax2+bx+c与x轴的交点为(0,0)、(2,0),
画出草图,可知
使y>0的x的取值范围为0<x<2.
y=0时,x=0或2,
即抛物线y=ax2+bx+c与x轴的交点为(0,0)、(2,0),
画出草图,可知
使y>0的x的取值范围为0<x<2.
点评:观察二次函数的对应值的表格,关键是寻找对称点,顶点坐标及对称轴,与x轴(y轴)的交点,确定二次函数的解析式.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x | -0.1 | -0.2 | -0.3 | -0.4 |
y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |