题目内容

(本题满分为14分)平面直角坐标系中,正方形AOBC如图所示,点C的坐标为(aa),其中a使得式子有意义,反比例函数的图象经过点C.

(1)求反比例函数解析式.

(2)若有一点D自A向O运动,且满足AD2=OD·AO,求此时D点坐标.

(3)若点D在AO上、G为OB的延长线上的点,AD=BG,连接AB交DG于点H,写出AB-2HB与AD之间的数量关系(直接写出不需证明).

(4)如图,点E为正方形AOBC的OB边一点,点F为BC上一点且∠CAE=∠FEA=60°,求直线EF的解析式.

 

(1)

把C(1,1)代入       ∴(3分)

(2)OA=1,OD=1-AD       AD2=OD·AO=1·(1-AD)

AD2+AD-1=0       AD=   ∵AD>0    ∴AD=

OD=      故D(0,)(7分)

(3)AB-2HB=AD(10分)

(4)∵∠CAE=∠FEA=60°   ∴∠OAE=30°   OA=1,设OE=x,则AE=2x

   解得,OE=

∠BEF=180°-∠OEA-∠AEF=60°    BE=1-OE=1   FE=2

BF=    ∴E()   F(1,

设解析式为

       解得

 

解析:略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网