题目内容
在有理数运算时,我们发现了:1 |
1×2 |
1 |
2 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
3×4 |
1 |
3 |
1 |
4 |
(1)
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2007×2008 |
(2)
1 |
1×3 |
1 |
3×5 |
1 |
5×7 |
1 |
49×51 |
分析:(1)分子为1,分母是两个连续自然数的乘积,第n项为
=
-
,所以原式=1-
+
-
+
-
+…
-
=1-
=
.
(2)分子为1,分母是两个连续奇数的乘积,第n项为
=
(
-
),所以原式=
(1-
+
-
+…+
-
)=
(1-
)=
.
1 |
n×(n+1) |
1 |
n |
1 |
n+1 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2007 |
1 |
2008 |
1 |
2008 |
2007 |
2008 |
(2)分子为1,分母是两个连续奇数的乘积,第n项为
1 |
n×(2n-1) |
1 |
2 |
1 |
n |
1 |
2n-1 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
49 |
1 |
51 |
1 |
2 |
1 |
51 |
25 |
51 |
解答:解:(1)
+
+
+…+
=1-
+
-
+
-
+…
-
=1-
=
;
(2)
+
+
+…+
=
(1-
+
-
+…+
-
)
=
(1-
)
=
.
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
2007×2008 |
=1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2007 |
1 |
2008 |
=1-
1 |
2008 |
=
2007 |
2008 |
(2)
1 |
1×3 |
1 |
3×5 |
1 |
5×7 |
1 |
49×51 |
=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
49 |
1 |
51 |
=
1 |
2 |
1 |
51 |
=
25 |
51 |
点评:解决这类题目找出变化规律,消去中间项,只剩首末两项,使运算变得简单.
练习册系列答案
相关题目