题目内容
(1)解方程:3x(x﹣1)=2﹣2x;
(2)已知二次函数的图象以A(﹣1,4)为顶点且过点B(2,﹣5),求该函数的解析式.
方程x+5=2x﹣3的解是________.
如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:
(1)直线DC是⊙O的切线;
(2)AC2=2AD•AO.
如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE中,DE的最小值是( )
A. 4 B. 6 C. 8 D. 10
在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点,交y轴于点C,点C关于抛物线对称轴对称的点为D.
(1)求点D的坐标及直线AD的解析式;
(2)如图1,连接CD、AD、BD,点M为线段CD上一动点,过M作MN∥BD交线段AD于N点,点P是y轴上的动点,当△CMN的面积最大时,求△MPN的周长取得最小值时点P的坐标;
(3)如图2,线段AE在第一象限内交BD于点E,其中tan∠EAB=,将抛物线向右水平移动,点A平移后的对应点为点G;将△ABD绕点B逆时针旋转,旋转后的三角形纪为△A1BD1,若射线BD1与线段AE的交点为F,连接FG.若线段FG把△ABF分成△AFG和△BFG两个三角形,是否存在点G,使得△AFG是直角三角形且△BFG是等腰三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.
二次函数y=x2+4的最_____值是_____.
已知3x+y=6,则xy的最大值为( )
A. 2 B. 3 C. 4 D. 6
已知二次函数y=x2﹣2ax(a为常数).当﹣1≤x≤4时,y的最小值是﹣12,则a的值为_____
建立适当的坐标系,运用函数知识解决下面的问题:
如图,是某条河上的一座抛物线形拱桥,拱桥顶部点E到桥下水面的距离EF为3米时,水面宽AB为6米,一场大雨过后,河水上涨,水面宽度变为CD,且CD=2米,此时水位上升了多少米?