题目内容
【题目】现有A,B两枚均匀的骰子(骰子的每个面上分别标有数字1,2,3,4,5,6).以小莉掷出A骰子正面朝上的数字为x、小明掷出B骰子正面朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P在已知抛物线y=-x2+5x上的概率为__.
【答案】
【解析】
通过列表表达出点P的所有可能坐标,并找出其中刚好在抛物线上的点即可求出所求概率了.
将点P可能的坐标列表表示如下:
x y | 1 | 2 | 3 | 4 | 5 | 6 |
1 | (1,1) | (1,2) | (1,3) | (1,4) | (1,5) | (1,6) |
2 | (2,1) | (2,2) | (2,3) | (2,4) | (2,5) | (2,6) |
3 | (3,1) | (3,2) | (3,3) | (3,4) | (3,5) | (3,6) |
4 | (4,1) | (4,2) | (4,3) | (4,4) | (4,5) | (4,6) |
5 | (5,1) | (5,2) | (5,3) | (5,4) | (5,5) | (5,6) |
6 | (6,1) | (6,2) | (6,3) | (6,4) | (6,5) | (6,6) |
由表中坐标可知,共有36种等可能结果出现,其中只有点(1,4)、(2,6)、(3,6)和点(4,4)四个点刚好在抛物线上,
∴P(点P刚好在抛物线上)=.
故答案为:.
练习册系列答案
相关题目
【题目】抛物线上部分点坐标如表所示,下列说法错误的是( )
x | … | -3 | -2 | -1 | 0 | 1 | … |
y | … | -6 | 0 | 4 | 6 | 6 | … |
A. 抛物线与y轴的交点为(0,6) B. 抛物线的对称轴是在y轴的右侧;
C. 抛物线一定经过点(3,0) D. 在对称轴左侧,y随x增大而减小.