题目内容

已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是


  1. A.
    16数学公式
  2. B.
    16
  3. C.
    8数学公式
  4. D.
    8
C
分析:首先由四边形ABCD是菱形,求得AC⊥BD,OA=AC,∠BAC=∠BAD,然后在直角三角形AOB中,利用30°角所对的直角边等于斜边的一半与勾股定理即可求得OB的长,然后由菱形的面积等于其对角线积的一半,即可求得该菱形的面积.
解答:解:∵四边形ABCD是菱形,
∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°,
∴AC=4,∠AOB=90°,
∴∠ABO=30°,
∴AB=2OA=4,OB=2
∴BD=2OB=4
∴该菱形的面积是:AC•BD=×4×4=8
故选C.
点评:此题考查了菱形的性质,直角三角形的性质.解题的关键是注意数形结合与方程思想的应用,注意菱形的面积等于其对角线积的一半.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网