题目内容

【题目】阅读材料:我们知道,若点A、B在数轴上分别表示有理数a、b,A、B两点间的距离表示为AB.则AB=|a-b|.所以式子|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.根据上述材料,解答下列问题:

(1)数轴上表示2和5两点之间的距离是___________;数轴上表示1和-3的两点之间的距离是__________

(2)数轴上表示x和2两点之间的距离表示为___________

3若,则 =5,则x=__________

(4)式子|x-3|+|x+1|=8 ,则x的值为_____________

(5) 若x表示一个有理数,式子|x-3|+|x+1|的最小值为___________.

【答案】 3 4 |x-2| 8或-2 5或-3 4

【解析】试题分析: 根据数轴上两点之间的距离 求出数轴上表示25两点之间的距离、数轴上表示1-3的两点之间的距离各是多少即可.
根据数轴上两点之间的距离求出数轴上表示-2的两点之间的距离表示为多少即可.

根据数轴上两点之间的距离数轴上到表示3的点距离为5的点有两个.
根据题意,分三种情况:Ⅰ 时;Ⅱ 时;Ⅲ 时;求出 的值是多少即可.

数轴上表示x的点到表示1的点的距离与它到表示-3的点的距离之和可表示为:|x-1|+|x+3|,当数轴上表示x的点在表示1的点和表示-3的点之间时,|x-1|+|x+3|的值最小.

试题解析: 数轴上表示25两点之间的距离是:|52|=3

数轴上表示13的两点之间的距离是:|1(3)|=4.

故答案为:3,4.
数轴上表示x2的两点之间的距离表示为:|x(2)|=|x+2|.

故答案为:|x+2|.

数轴上到表示3的点距离为5的点有两个:8-2.

故答案为:8-2.

|x3|+|x+1|=8

时,

span>3xx1=8

解得x=3.

1<x<3时,

3x+x+1=8

此时x无解.

时,

x3+x+1=8

解得x=5.

(5) 数轴上表示x的点到表示1的点的距离与它到表示3的点的距离之和可表示为:|x1|+|x+3|

当数轴上表示x的点在表示1的点和表示3的点之间时,

|x1|+|x+3|的最小值是:|1(3)|=4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网