题目内容
【题目】如图1,,是线段上的一个动点,分别以为边,在的同侧构造菱形和菱形,三点在同一条直线上连结,设射线与射线交于.
(1)当在点的右侧时,求证:四边形是平形四边形.
(2)连结,当四边形恰为矩形时,求的长.
(3)如图2,设,,记点与之间的距离为,直接写出的所有值.
【答案】(1)见解析;(2)FG=;(3)d=14或.
【解析】
(1)由菱形的性质可得AP∥EF,∠APF=∠EPF=∠APE,PB∥CD,∠CDB=∠PDB=∠CDP,由平行线的性质可得∠FPE=∠BDP,可得PF∥BD,即可得结论;
(2)由矩形的性质和菱形的性质可得FG=PB=2EF=2AP,即可求FG的长;
(3)分两种情况讨论,由勾股定理可求d的值;点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H;若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H.
(1)∵四边形APEF是菱形
∴AP∥EF,∠APF=∠EPF=∠APE,
∵四边形PBCD是菱形
∴PB∥CD,∠CDB=∠PDB=∠CDP
∴∠APE=∠PDC
∴∠FPE=∠BDP
∴PF∥BD,且AP∥EF
∴四边形四边形FGBP是平形四边形;
(2)若四边形DFPG恰为矩形
∴PD=FG,PE=DE,EF=EG,
∴PD=2EF
∵四边形APEF是菱形,四边形PBCD是菱形
∴AP=EF,PB=PD
∴PB=2EF=2AP,且AB=10
∴FG=PB=.
(3)如图,点G在DP的右侧,连接AC,过点C作CH⊥AB,交AB延长线于点H,
∵FE=2EG,
∴PB=FG=3EG,EF=AP=2EG
∵AB=10
∴AP+PB=5EG=10
∴EG=2,
∴AP=4,PB=6=BC,
∵∠ABC=120°,
∴∠CBH=60°,且CH⊥AB
∴BH=BC=3,CH=BH=3
∴AH=13
∴AC==14
若点G在DP的左侧,连接AC,过点C作CH⊥AB,交AB延长线于点H
∵FE=2EG,
∴PB=FG=EG,EF=AP=2EG
∵AB=10,
∴3EG=10
∴EG=
∴BP=BC=
∵∠ABC=120°,
∴∠CBH=60°,且CH⊥AB
∴BH=BC=,CH=BH=
∴AH=
∴AC=
综上所述:d=14或.