题目内容
【题目】如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG围成,其中A1、G、B1在上,A2、A3…、An与B2、B3、…Bn分别在半径OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距离平行排放(最后一个矩形状框的边CnDn与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥AnCn.
(1)求d的值;
(2)问:CnDn与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?
【答案】(1);(2)不能,.
【解析】
试题分析:(1)根据d=FH2,求出EH2即可解决问题.
(2)假设CnDn与点E间的距离能等于d,列出关于n的方程求解,发现n没有整数解,由=≈4.8,求出n即可解决问题.
试题解析:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH1=r,FH1=r﹣r,∴d==;
(2)假设CnDn与点E间的距离能等于d,由题意,这个方程n没有整数解,所以假设不成立.
∵=≈4.8,∴n=6,此时CnDn与点E间的距离==.
【题目】将连续偶数排成如表,根据8是第1行第4个数,所以将8的位置表示为(1,4),类似地将34的位置表示为(3,5),按这样的规律,2018的位置可表示为_____.
2 | 4 | 6 | 8 | 10 | 12 |
14 | 16 | 18 | 20 | 22 | 24 |
26 | 28 | 30 | 32 | 34 | 36 |