题目内容
【题目】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的两个实数根,且x1、x2满足不等式x1x2+2(x1+x2)>0,求实数m的取值范围.
【答案】解:∵方程2x2﹣2x+1﹣3m=0有两个实数根,
∴△=4﹣8(1﹣3m)≥0,解得m≥ .
由根与系数的关系,得x1+x2=1,x1x2= .
∵x1x2+2(x1+x2)>0,
∴ +2>0,解得m< .
∴ ≤m<
【解析】已知x1、x2是一元二次方程2x2﹣2x+1﹣3m=0的两个实数根,可推出△=(﹣2)2﹣4×2(1﹣3m)≥0,根据根与系数的关系可得x1x2= ,x1+x2=1;且x1、x2满足不等式x1x2+2(x1+x2)>0,代入即可得到一个关于m的不等式,由此可解得m的取值范围.
【考点精析】掌握求根公式和根与系数的关系是解答本题的根本,需要知道根的判别式△=b2-4ac,这里可以分为3种情况:1、当△>0时,一元二次方程有2个不相等的实数根2、当△=0时,一元二次方程有2个相同的实数根3、当△<0时,一元二次方程没有实数根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定;两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.
练习册系列答案
相关题目