题目内容

【题目】如图,在10×10的正方形网格中(每个小正方形的边长都为1个单位),△ABC的三个顶点都在格点上.建立如图所示的直角坐标系,

请在图中标出△ABC的外接圆的圆心P的位置,并填写: 圆心P的坐标:P ,

2)将△ABC绕点A逆时针旋转90°得到△ADE,画出图

形,并求△ABC扫过的图形的面积.

【答案】1P 5 3 2

【解析】试题分析:

(1)由外心是三角形各边垂直平分线的交点可知,我们在方格纸中画出ABBC两边的垂直平分线就可找到外心,并得到其坐标;

(2)如图,在旋转过程中,△ABC扫过的面积=S扇形ACE+S△ABC,因此我们只需要利用图中的信息由勾股定理计算出AC的长就可计算了.

试题解析

(1)如图,利用图中的格点分别画出线段ABBC的垂直平分线,两条垂直平分线的交点为所求的P点,由图可得点P的坐标为(5,3);

2)根据图中信息由勾股定理可得: ∴△ABC在旋转过程中扫过的面积为S扇形ACE+SABC=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网