题目内容
如图,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:
①AD上任意一点到点C、点B的距离相等;
②AD上任意一点到AB、AC的距离相等;
③AD⊥BC且BD=CD;
④∠BDE=∠CDF.
其中正确的个数是
- A.1个
- B.2个
- C.3个
- D.4个
D
分析:先根据等腰三角形三线合一的性质得出AD是BC的中垂线,再由中垂线的性质可判断①正确;
根据角平分线的性质可判断②正确;
根据等腰三角形三线合一的性质得出AD是BC的中垂线,从而可判断③正确;
根据△BDE和△DCF均是直角三角形,而根据等腰三角形的性质可得出∠B=∠C,由等角的余角相等即可判断④正确.
解答:∵AB=AC,AD是∠BAC的平分线,
∴AD⊥BC,BD=CD,
∴线段AD上任一点到点C、点B的距离相等,
∴①正确;
∵AD是∠BAC的平分线,
∴AD上任意一点到AB、AC的距离相等,②正确;
∵AB=AC,AD是∠BAC的平分线,
∴AD⊥BC,BD=CD,
∴③正确;
∵AB=AC,
∴∠B=∠C;
∵∠BED=∠DFC=90°,
∴∠BDE=∠CDF,④正确.
故选D.
点评:此题主要考查学生对等腰三角形的性质、直角三角形的性质及角平分线的性质等知识点的综合运用能力,比较简单.
分析:先根据等腰三角形三线合一的性质得出AD是BC的中垂线,再由中垂线的性质可判断①正确;
根据角平分线的性质可判断②正确;
根据等腰三角形三线合一的性质得出AD是BC的中垂线,从而可判断③正确;
根据△BDE和△DCF均是直角三角形,而根据等腰三角形的性质可得出∠B=∠C,由等角的余角相等即可判断④正确.
解答:∵AB=AC,AD是∠BAC的平分线,
∴AD⊥BC,BD=CD,
∴线段AD上任一点到点C、点B的距离相等,
∴①正确;
∵AD是∠BAC的平分线,
∴AD上任意一点到AB、AC的距离相等,②正确;
∵AB=AC,AD是∠BAC的平分线,
∴AD⊥BC,BD=CD,
∴③正确;
∵AB=AC,
∴∠B=∠C;
∵∠BED=∠DFC=90°,
∴∠BDE=∠CDF,④正确.
故选D.
点评:此题主要考查学生对等腰三角形的性质、直角三角形的性质及角平分线的性质等知识点的综合运用能力,比较简单.
练习册系列答案
相关题目