题目内容
【题目】已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED, EF⊥ED.求证: AE平分∠BAD.
【答案】证明见解析
【解析】要证AE平分∠BAD,可转化为△ABE为等腰直角三角形,得AB=BE,又AB=CD,再将它们分别转化为两全等三角形的两对应边,根据全等三角形的判定,和矩形的性质,可确定ASA.即求证.
证明:∵四边形ABCD是矩形,
∴∠B=∠C=∠BAD=90°,AB=CD,
∴∠BEF+∠BFE=90°.
∵EF⊥ED,
∴∠BEF+∠CED=90°.
∴∠BFE=∠CED.
∴∠BEF=∠EDC.
又∵EF=ED,
∴△EBF≌△DCE.
∴BE=CD.
∴BE=AB.∴∠BAE=∠BEA=45°.
∴∠EAD=45°.
∴∠BAE=∠EAD.
∴AE平分∠BAD.
练习册系列答案
相关题目