题目内容
【题目】按要求回答问题
(1)观察下列图形与等式的关系,并填空:
(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:
1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1= .
【答案】
(1)
解:1+3+5+7=16=42,
设第n幅图中球的个数为an,
观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,
∴an﹣1=1+3+5+…+(2n﹣1)=n2.
故答案为:42;n2
(2)2n+1;2n2+2n+1
【解析】解(2)观察图形发现:
图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,
即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,
=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,
=an﹣1+(2n+1)+an﹣1 ,
=n2+2n+1+n2 ,
=2n2+2n+1.
所以答案是:2n+1;2n2+2n+1.
练习册系列答案
相关题目
【题目】自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( )
组别 | 月用水量x(单位:吨) |
A | 0≤x<3 |
B | 3≤x<6 |
C | 6≤x<9 |
D | 9≤x<12 |
E | x≥12 |
A.18户
B.20户
C.22户
D.24户