题目内容
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD⊥AM,垂足为D.
(1)求证:CD是⊙O的切线;
(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)先证明OC∥AM,由CD⊥AM,推出OC⊥CD即可解决问题.
(2)根据S阴=S△ACD﹣(S扇形OAC﹣S△AOC)计算即可.
试题解析:(1)连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠MAC=∠OAC,∴∠MAC=∠OCA,∴OC∥AM,∵CD⊥AM,∴OC⊥CD,∴CD是⊙O的切线.
(2)在RT△ACD中,∵∠ACD=30°,AD=4,∠ADC=90°,∴AC=2AD=8,CD=AD=,∵∠MAC=∠OAC=60°,OA=OC,∴△AOC是等边三角形,∴S阴=S△ACD﹣(S扇形OAC﹣S△AOC)
==.
练习册系列答案
相关题目