题目内容
【题目】如图,在等腰三角形ABC中,AB=AC,点D在BA的延长线上,BC=24, .
(1)求AB的长;
(2)若AD=6.5,求的余切值.
【答案】(1)13(2)
【解析】试题分析:
(1)过点A作AE⊥BC于点E,结合AB=AC,BC=24可得BE=12,在Rt△AEB中,由sin∠ABC= 设AE=5k,AB=13k,由勾股定理可得解得BE=12k=12,由此可得k=1,从而可得AB=13;
(2)过点D作DF⊥BC于点F,则易得BD=19.5,AE∥DF,从而可得结合AE=5,BE=12,AB=13即可求得DF=,BF=18,由此可得CF=BC-BF=6,结合∠DFC=90°即可得到cot∠DCB= .
试题解析:
(1)过点A作AE⊥BC,垂足为点E,
∵AB=AC,
∴BE=BC=12,
在Rt△ABE中,∠AEB=90°,sin∠ABC=,
设AE=5k,AB=13k,∵AB2=AE2+BE2,
∴169k2=25k2+BE2,解得BE=12K=12,
∴k=1,
∴AE=5,AB=13;
(2)过点D作DF⊥BC,垂足为点F,
∵AD=6.5,AB=13,
∴BD=AB+AD=19.5,
∵AE⊥BC,DF⊥BC ,
∴ ∠AEB=∠DFB=90°,
∴AE∥DF,
∴,
又 ∵ AE=5,BE=12,AB=13,
∴DF=,BF=18,
∴CF=BC=BF=6,
∵在Rt△DCF中,∠DFC=90°,
∴cot∠DCB= .
【题目】为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
车型 | 目的地 | |
A村(元/辆) | B村(元/辆) | |
大货车 | ||
800 | 900 | |
小货车 | 400 | 600 |
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.