题目内容
【题目】如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD,OP是∠BOC的平分线.
(1)请写出图中所有∠EOC的补角 ____________________;
(2)如果∠POC:∠EOC=2:5.求∠BOF的度数.
【答案】(1)∠EOD和∠AOF;(2)50°.
【解析】试题分析:(1)首先根据垂直定义可得∠AOE=∠DOF=90°,然后再证明∠EOD=∠AOF,根据补角定义可得∠EOD,∠AOF都是∠EOC的补角;
(2)根据角平分线定义可得∠POC=∠POB,再根据条件∠POC:∠EOC=2:5,可得∠COP的度数,然后即可算出∠BOF的度数.
试题解析:解:(1)∵OE⊥AB,OF⊥CD,∴∠AOE=∠DOF=90°,∴∠EOA+∠AOD=∠DOF+∠AOD,即:∠EOD=∠AOF,∵∠EOC+∠EOD=180°,∴∠AOF+∠EOC=180°,∴∠EOD,∠AOF都是∠EOC的补角,故答案为:∠EOD,∠AOF;
(2)∵OP是∠BOC的平分线,∴∠POC=∠POB,∵∠POC:∠EOC=2:5,∴∠POC=90°×=20°,∴∠POB=20°,∵∠DOF=90°,∴∠BOF=90°﹣20°﹣20°=50°.
练习册系列答案
相关题目
【题目】某电视台组织知识竞赛,共设20道选择题,每题必答,如表记录了3个参赛者的得分情况.
(1)参赛者小婷得76分,她答对了几道题?
(2)参赛者小明说他得了80分.你认为可能吗?为什么?
参赛者 | 答对题数 | 答错题数 | 总得分 |
甲 | 20 | 0 | 100 |
乙 | 19 | 1 | 94 |
丙 | 14 | 6 | 64 |