题目内容
【题目】如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2= .
【答案】240°
【解析】解:根据三角形的内角和定理得:
四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,
则根据四边形的内角和定理得:
∠1+∠2=360°﹣120°=240°.
所以答案是:240°.
【考点精析】解答此题的关键在于理解三角形的内角和外角的相关知识,掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角,以及对多边形内角与外角的理解,了解多边形的内角和定理:n边形的内角和等于(n-2)180°.多边形的外角和定理:任意多边形的外角和等于360°.
【题目】小明根据华师版八年级下册教材P37学习内容,对函数y= x2的图象和性质进行了探究,试将如下尚不完整的过程补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应数值如表:
x | … | ﹣4 | n | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 8 | 4.5 | 2 | 0.5 | 0 | 0.5 | 2 | 4.5 | 8 | … |
其中n=;
(2)如图,在平面直角三角形坐标系xOy中,已描出了以上表中的部分数值为坐标的点,根据描出的点,画出该函数的大致图象.
(3)根据画出的函数图象,小明观察发现:该函数有最小值,没有最大值;当函数值取最小时,自变量x的值为 .
(4)进一步探究函数的图象发现: ①若点A(xa , ya),点B(xb , yb)在函数y= 的图象上;
当xa<xb<0时,ya与yb的大小关系是;
当0<xa<xb时,ya与yb的大小关系是;
②直线y1恰好经过函数的图象上的点(﹣2,2)与(1,0.5);当y<y1时,x的取值范围是 .