题目内容
【题目】如图,一次函数y=﹣x+4的图象与反比例函数y= (k为常数,且k≠0)的图象交于A(1,a),B两点.
(1)求反比例函数的表达式及点B的坐标;
(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.
【答案】
(1)解:把点A(1,a)代入一次函数y=﹣x+4,
得:a=﹣1+4,解得:a=3,
∴点A的坐标为(1,3).
把点A(1,3)代入反比例函数y= ,
得:3=k,
∴反比例函数的表达式y= ,
联立两个函数关系式成方程组得: ,
解得: ,或 ,
∴点B的坐标为(3,1)
(2)解:作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.
∵点B、D关于x轴对称,点B的坐标为(3,1),
∴点D的坐标为(3,﹣1).
设直线AD的解析式为y=mx+n,
把A,D两点代入得: ,
解得: ,
∴直线AD的解析式为y=﹣2x+5.
令y=﹣2x+5中y=0,则﹣2x+5=0,
解得:x= ,
∴点P的坐标为( ,0).
S△PAB=S△ABD﹣S△PBD= BD(xB﹣xA)﹣ BD(xB﹣xP)= ×[1﹣(﹣1)]×(3﹣1)﹣ ×[1﹣(﹣1)]×(3﹣ )=
【解析】(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.
【题目】把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花朵数的情况如下表:
颜色 | 红 | 黄 | 蓝 | 白 | 紫 | 绿 |
花朵数 | 1 | 2 | 3 | 4 | 5 | 6 |
现将上述大小相同,颜色、花朵分布完全一样的四个正方体拼成一个在同一平面上放置的长方体,如图所示,那么长方体的下底面共有_____朵花.
【题目】为了鼓励市民节约用水,万州市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费自来水销售费用污水处理费用)
自来水销售价格 | 污水处理价格 | |
每户每月用水量 | 单价:元吨 | 单价:元吨 |
17吨及以下 | 0.80 | |
超过17吨不超过30吨的部分 | 0.80 | |
超过30吨的部分 | 6.00 | 0.80 |
说明:①每户产生的污水量等于该户的用水量,②水费=自来水费+污水处理费;
已知小明家2013年3月份用水20吨,交水费66元;5月份用水25吨,交水费91元.
(1)求,的值.
(2)随着夏天的到来,用水量将增加。为了节省开支,小梦计划把6月份的水费控制在不超过家庭月收入的2%,若小梦加的月收入为9200元,则小王家6月份最多能用水多少吨?