题目内容

【题目】如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为(  )

A.
B.
C.π
D.

【答案】B
【解析】解答: 如图,连接AF、DF,
由圆的定义,AD=AF=DF,
所以,△ADF是等边三角形,
∵∠BAD=90°,∠FAD=60°,
∴∠BAF=90°-60°=30°,
同理,弧DE的圆心角是30°,
∴弧EF的圆心角是90°-30°×2=30°,
∴ EF=
由对称性知,图中阴影部分的外围四条弧都相等,
所以,图中阴影部分的外围周长=
故选B.

连接AF、DF,根据圆的定义判断出△ADF是等边三角形,根据正方形和等边三角形的性质求出∠BAF=30°,同理可得弧DE的圆心角是30°,然后求出弧EF的圆心角是30°,再根据弧长公式求出弧EF的长,然后根据对称性,图中阴影部分的外围四条弧都相等列式计算即可得解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网