题目内容
【题目】如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为( )
A.
B.
C.π
D.
【答案】B
【解析】解答: 如图,连接AF、DF,
由圆的定义,AD=AF=DF,
所以,△ADF是等边三角形,
∵∠BAD=90°,∠FAD=60°,
∴∠BAF=90°-60°=30°,
同理,弧DE的圆心角是30°,
∴弧EF的圆心角是90°-30°×2=30°,
∴ EF=
由对称性知,图中阴影部分的外围四条弧都相等,
所以,图中阴影部分的外围周长=
故选B.
连接AF、DF,根据圆的定义判断出△ADF是等边三角形,根据正方形和等边三角形的性质求出∠BAF=30°,同理可得弧DE的圆心角是30°,然后求出弧EF的圆心角是30°,再根据弧长公式求出弧EF的长,然后根据对称性,图中阴影部分的外围四条弧都相等列式计算即可得解.
练习册系列答案
相关题目
【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成绩 | 中位数 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | 9.5 |
(1)完成表中填空①;②;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为 ,你认为推荐谁参加比赛更合适,请说明理由.