题目内容
计算(-1 | 2 |
分析:首先把(-
)2003变为(-
)2000×(-
)3,而(-
)2000和22000互为倒数,由此即可求出题目的结果.
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
解答:解:(-
)2003×22000
=(-
)2000×22000×(-
)3
=(-
)3
=-
.
故填空答案:-
.
1 |
2 |
=(-
1 |
2 |
1 |
2 |
=(-
1 |
2 |
=-
1 |
8 |
故填空答案:-
1 |
8 |
点评:灵活运用同底数幂的乘法性质及积的乘方的逆运算是解决本题的关键.

练习册系列答案
相关题目
为了回馈顾客,某商场在“五一”期间对一次购物超过200元的顾客进行抽奖返券活动.活动方案有二:
方案一:顾客分别转动甲、乙两个转盘各一次(甲盘的白色区域占
,乙盘的白色区域占
,其余均为黑色区域),若转盘停止时指针的指向为下表中的组合,则可按下表获得赠券.
方案二:尊重顾客意愿,可以不经过抽奖,直接领取10元赠券.
问题:
(1)方案一中,顾客获得10元和50元赠券的概率分别是多少?
(2)如果你是顾客,你会选择两种方案中的哪一种?试通过计算给出合理理由.
方案一:顾客分别转动甲、乙两个转盘各一次(甲盘的白色区域占
1 |
3 |
1 |
2 |
两转盘颜色(甲,乙) | (黑,黑) | (黑,白) | (白,黑) | (白,白) |
中奖券金额 | 0元 | 10元 | 20元 | 50元 |
问题:
(1)方案一中,顾客获得10元和50元赠券的概率分别是多少?
(2)如果你是顾客,你会选择两种方案中的哪一种?试通过计算给出合理理由.
据悉,为鼓励货车合理装载,减少重载车对高速公路的损害,宁波市即将对各类货车的高速公路里程费进行记重收费.现有一辆合理重量为20吨的货车(含车重,以下同),里程费记重收费方案是:重量在20吨以内(包括20吨)时按每公里每吨0.09元收费;重量在20吨以上时,超载量按如下方案收费:(设货车超载x吨)
(1)若该货车某次记重显示为25吨,从宁波运往100公里处的某地,求货车需要支付的高速公路里程费;
(2)当6<X≤10时,设货车运输的距离为y公里,求货车需要支付的高速公路里程费;
(3)某次该货车记重显示为28吨,开往距离为200公里的某地,已知货车交除里程费外的其他费用后,运输的利润为每吨为12元,问此次货车超载是否亏本?请通过计算加以说明.
超载量 | 计费办法 | |
(1) | 0<x≤2 | 每公里每吨0.09元 |
(2) | 2<x≤6 | 不超过2吨的部分按(1)收费,其余按每公里每吨0.12元收费 |
(3) | 6<x≤10 | 不超过6吨的部分按(1)(2)收费,其余按每公里每吨0.18元收费 |
… | … | … |
(2)当6<X≤10时,设货车运输的距离为y公里,求货车需要支付的高速公路里程费;
(3)某次该货车记重显示为28吨,开往距离为200公里的某地,已知货车交除里程费外的其他费用后,运输的利润为每吨为12元,问此次货车超载是否亏本?请通过计算加以说明.