题目内容
【题目】为选拔参加八年级数学“拓展性课程”活动人选,数学李老师对本班甲、乙两名学生以前经历的10次测验成绩(分)进行了整理、分析(见图①):
学生 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 83.7 | a | 86 | 13.21 |
乙 | 83.7 | 82 | b | 46.21 |
(1)写出a,b的值;
(2)如要推选1名学生参加,你推荐谁?请说明你推荐的理由.
【答案】(1)84.5;81;(2)甲或乙.
【解析】
(1)依据中位数和众数的定义进行求解即可;
(2)依据平均数、中位数、方差以及众数的角度分析,即可得到哪个学生的水平较高.
(1)甲组数据排序后,最中间的两个数据为:84和85,故中位数a=×(84+85)=84.5,
乙组数据中出现次数最多的数据为81,故众数b=81;
(2)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;
或:乙,理由:在90≤x≤100的分数段中,乙的次数大于甲.(答案不唯一,理由须支撑推断结论).
练习册系列答案
相关题目
【题目】已知△A′B′C′是由△ABC经过平移得到的,它们各顶点在平面直角坐标系中的坐标如下表所示:
△ABC | A(a,0) | B(3,0) | C(5,5) |
△A′B′C′ | A′(4,2) | B′(7,b) | C′(c,7) |
(1)观察表中各对应点坐标的变化,并填空:a=________,b=________,c=________;
(2)在平面直角坐标系中画出△ABC及平移后的△A′B′C′;
(3)直接写出△A′B′C′的面积是________.