题目内容
【题目】已知:关于x的方程x2+2mx+m2﹣1=0
(1)不解方程,判别方程根的情况;
(2)若方程有一个根为3,求m的值.
【答案】
(1)解:由题意得,a=1,b=2m,c=m2﹣1,
∵△=b2﹣4ac=(2m)2﹣4×1×(m2﹣1)=4>0,
∴方程x2+2mx+m2﹣1=0有两个不相等的实数根
(2)解:∵x2+2mx+m2﹣1=0有一个根是3,
∴32+2m×3+m2﹣1=0,
解得,m=﹣4或m=﹣2
【解析】(1)找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断;(2)将x=3代入已知方程中,列出关于系数m的新方程,通过解新方程即可求得m的值.
练习册系列答案
相关题目