题目内容
【题目】如图,点在直线上,过点作交直线于点,为边在外侧作等边三角形,再过点作,分别交直线和于两点,以为边在外侧作等边三角形按此规律进行下去,则第个等边三角形的面积为__________.(用含的代数式表示)
【答案】.
【解析】
试题分析:由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出OA2=3,通过解直角三角形可得出A2B2的长度,同理可求出AnBn的长度,再根据等边三角形的面积公式即可求出第n个等边三角形AnBnCn的面积.
∵点A1(1,),∴OA1=2.
∵直线l1:y=x,直线l2:y=x,∴∠A1OB1=30°.
在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,
∴A1B1=OB1,∴A1B1=.
∵△A1B1C1为等边三角形,∴A1A2=A1B1=1,
∴OA2=3,A2B2=.
同理,可得出:A3B3=,A4B4=,…,AnBn=,
∴第n个等边三角形AnBnCn的面积为.
故答案为:.
练习册系列答案
相关题目