题目内容
【题目】已知:,OB,OM,ON是内的射线.
如图1,若OM平分,ON平分当射线OB绕点O在内旋转时,______度
也是内的射线,如图2,若,OM平分,ON平分,当绕点O在内旋转时,求的大小.
在的条件下,若,当在绕O点以每秒的速度逆时针旋转t秒,如图3,若::3,求t的值.
【答案】(1) 80;(2) 70°;(3)t为21秒.
【解析】
(1)因为∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.若OM平分∠AOB,ON平分∠BOD,则 然后根据关系转化求出角的度数;
(2)利用各角的关系求
(3)由题意得
由此列出方程求解即可.
解:(1)∵OM平分∠AOB,ON平分∠BOD,
∴
∴∠MON=∠BOM+∠BON
=80°,
故答案为:80;
(2)∵OM平分∠AOC,ON平分∠BOD,
∴
即∠MON=∠MOC+∠BON﹣∠BOC
=70°;
又∵∠AOM:∠DON=2:3,
∴3(30°+2t)=2(150°﹣2t),
得t=21.
答:t为21秒.
练习册系列答案
相关题目
【题目】某生产小组有名工人,调查每个工人的日均零件生产能力,获得如表数据:
日均生产零件的个数(个) | ||||||
工人人数(人) |
求这名工人日均生产零件的众数、中位数、平均数.
为提高工作效率和工人的工作积极性,生产管理者准备实行“每天定额生产,超产有奖”的措施,如果你是管理者,你将如何确定这个定额?请说明理由.