题目内容

【题目】在等边△ABC中,EBC边上一点,GBC延长线上一点,过点E作∠AEM60°,交∠ACG的平分线于点M

1)如图1,当点EBC边的中点位置时,求证:AEEM

2)如图2,当点EBC边的任意位置时,(1)中的结论是否成立?请说明理由.

【答案】1)见解析;(21)中的结论成立,理由见解析.

【解析】

1)取AB的中点N,连接EN,可证明△ANE≌△ECM,可证得AEEM

2AB上取点H,使BHBE,根据等边三角形的证明△AHE≌△ECM即可求解.

1)证明:取AB的中点N,连接EN

∵△ABC为等边三角形,EN为中点,

AEBC,且AE平分∠BAC

ANNEEC,∠NAE=∠NEA30°,∴∠ANE120°,

∵∠AEM60°,∴∠MEC30°,∴∠NAE=∠CEM

CM平分∠ACG,∴∠ACM60°,∴∠ECM=∠ANE120°,

在△ANE和△ECM中,,∴△ANE≌△ECMASA),

AEEM

2)在AB上取点H,使BHBE

∵△ABC是等边三角形,∴ABBC,∠B60°.

BHBE,∴AHCE

∴△BHE是等边三角形,∴∠BHE60°.∴∠AHE120°.

∵∠ECM120°.∴∠AHE=∠ECM

∵∠AEM+MEC=ABC+EAH,∴∠EAH=MEC

在△AHE和△ECM,∴△AHE≌△ECMASA).

AEEM

练习册系列答案
相关题目

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.

【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.

本题解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴点A的坐标为(3,3).

设反比例函数的解析式为y= (k≠0),

∴3,∴k=9,则这个反比例函数的解析式为y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由题意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S阴影=S扇形AOA′-SODC=6π.

点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.

型】解答
束】
26

【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.

① 求证:△OCP∽△PDA;

② 若△OCP与△PDA的面积比为1:4,求边AB的长.

(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网