题目内容
解答题:如图,⊙P与x轴相切于坐标原点O,⊙P与y轴交于点A(0,2),点B的坐标为(![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_ST/0.png)
(1)求线段BC的长;
(2)求直线AC的函数解析式.
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_ST/images1.png)
【答案】分析:(1)由圆P与x轴切于坐标原点,且与y轴交于A点,根据切线的性质得到AO垂直于x轴,且AO为直径,得到AO的长,由AO的长求出半径OP的长,再由PC为圆的半径,得出PC的长,同时由B的坐标得出OB的长,在三角形BOP中,由OP及OB的长,利用勾股定理求出BP的长,由BP-CP即可求出BC的长;
(2)过C作CH垂直于x轴,由AO也垂直于x轴,得到CH与AO平行,由平行得比例,列出比例式,将BO,PO,BC,BP的长代入,求出CH及BH的长,由OB-BH求出OH的长,根据CH及OH的长,得出C的坐标,由直线AC与y轴的交点A的坐标设出直线AC的方程为y=kx+2,k不为0,将C的坐标代入确定出k的值,即可确定出直线AC的解析式.
解答:解:(1)∵⊙P与x轴切于坐标原点O,且交y轴于点A(0,2),
∴AO⊥x轴于O,OA是直径且OA=2,
∴OP=1,
又∵BP交⊙P于C,∴CP=1,
∵B(-2
,0),∴OB=2
,
Rt△BOP中,根据勾股定理得:BP=
=3,
则BC=BP-CP=2;
(2)过C作CH⊥BO于H,
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/images3.png)
∵AO⊥x轴,
∴CH∥PO,
∴
=
=
,
又∵PO=1,BC=2,BP=3,OB=2
,
∴CH=
=
,BH=
=
,
∴HO=OB-BH=
,
∴C(-![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/12.png)
,
),
根据直线AC交y轴于点A(0,2),设直线AC的解析式为y=kx+2(k≠0),
将C的坐标代入得:-![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/15.png)
k+2=
,
∴k=
,
∴直线AC的解析式为y=
x+2.
点评:此题属于一次函数的综合题,涉及的知识有:勾股定理,平行线的性质,利用待定系数法求一次函数的解析式,以及切线的性质,利用了数形结合及转化的数学思想,要求学生掌握知识要全面.
(2)过C作CH垂直于x轴,由AO也垂直于x轴,得到CH与AO平行,由平行得比例,列出比例式,将BO,PO,BC,BP的长代入,求出CH及BH的长,由OB-BH求出OH的长,根据CH及OH的长,得出C的坐标,由直线AC与y轴的交点A的坐标设出直线AC的方程为y=kx+2,k不为0,将C的坐标代入确定出k的值,即可确定出直线AC的解析式.
解答:解:(1)∵⊙P与x轴切于坐标原点O,且交y轴于点A(0,2),
∴AO⊥x轴于O,OA是直径且OA=2,
∴OP=1,
又∵BP交⊙P于C,∴CP=1,
∵B(-2
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/1.png)
Rt△BOP中,根据勾股定理得:BP=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/2.png)
则BC=BP-CP=2;
(2)过C作CH⊥BO于H,
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/images3.png)
∵AO⊥x轴,
∴CH∥PO,
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/5.png)
又∵PO=1,BC=2,BP=3,OB=2
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/6.png)
∴CH=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/10.png)
∴HO=OB-BH=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/11.png)
∴C(-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/14.png)
根据直线AC交y轴于点A(0,2),设直线AC的解析式为y=kx+2(k≠0),
将C的坐标代入得:-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/17.png)
∴k=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/18.png)
∴直线AC的解析式为y=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131022165051882156303/SYS201310221650518821563022_DA/19.png)
点评:此题属于一次函数的综合题,涉及的知识有:勾股定理,平行线的性质,利用待定系数法求一次函数的解析式,以及切线的性质,利用了数形结合及转化的数学思想,要求学生掌握知识要全面.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目