题目内容

【题目】如图,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:

(1)旋转中心是点 , 旋转的最小角度是
(2)AC与EF的位置关系如何,并说明理由.

【答案】
(1)B;90
(2)解:AC⊥EF 理由如下:

延长EF交AC于点D由旋转可知∠C=∠E

∵∠ABC=90°

∴∠C+∠A=90°

∴∠E+∠A=90°

∴∠ADE=90°

∴AC⊥EF.


【解析】解:(1)∵BC=BE,BA=BF,
∴BC和BE,BA和BF为对应边,
∵△ABC旋转后能与△FBE重合,
∴旋转中心为点B;
∵∠ABC=90°,
而△ABC旋转后能与△FBE重合,
∴∠ABF等于旋转角,
∴旋转了90度,
所以答案是:B,90;
【考点精析】认真审题,首先需要了解旋转的性质(①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网