题目内容
【题目】在一个不透明袋子中有1个红球、1 个绿球和n个白球,这些球除颜色外都相同.
(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n的值为 ;
(2)当n=2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.
【答案】(1)6;(2)
【解析】试题分析:(1)根据白球的频率稳定在0.75附近得到白球的概率约为0.75,根据白球个数确定出总个数,进而确定出黑球个数;
(2)将所有等可能的结果列举出来,利用概率公式求解即可.
试题解析:(1)根据题意得: ,
解得:n=6,
则n的值为6,
(2)任意摸出2个球,共有12种等可能的结果,即(红,绿)、(红,白1)、(红,白2)、(绿,红)、(绿,白1)、(绿,白1)、(白1,红)、(白1,绿)、(白1,白2)、(白2,红)、(白2,绿)、(白2,白1),
其中2个球颜色不同的结果有10种,所以所求概率为
练习册系列答案
相关题目