题目内容

【题目】如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B.C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.

(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①探究BD与CF之间的位置关系,并说明理由;
②当AB= ,AD= +1时,求线段DH的长.

【答案】
(1)

解:如图2中,BD=CF成立.

理由:由旋转得:AC=AB,∠CAF=∠BAD=θ;AF=AD,

在△ABD和△ACF中,

∴△ABD≌△ACF,

∴BD=CF


(2)

①证明:如图3中,

由(1)得,△ABD≌△ACF,

∴∠HFN=∠ADN,

∵∠HNF=∠AND,∠AND+∠AND=90°

∴∠HFN+∠HNF=90°

∴∠NHF=90°,

∴HD⊥HF,即BD⊥CF.

②如图4中,连接DF,延长AB,与DF交于点M.

∵四边形ADEF是正方形,

∴∠MDA=45°,

∵∠MAD=45°

∴∠MAD=∠MDA,∠AMD=90°,

∴AM=DM,

∵AD= +1,

在△MAD中,AM2+DM2=AD2

∴AM=DM=

∴MB=AM﹣AB= =

在Rt△BMD中,BM2+DM2=BD2

∴BD= =2.

在Rt△ADF中,AD= +1,

∴DF= AD= +

由②知,HD⊥HF,

∴∠DHF=∠DMB=90°,

∵∠BDM=∠FDH,

∴△BDM∽△FDH,

∴DH= = =2+


【解析】(1)结论:BD=CF.只要证明△ABD≌△ACF即可.(2)①在利用“8字型”证明∠FHN=∠DAN=90°,即可解决问题.②如图4中,连接DF,延长AB,与DF交于点M.在Rt△ADM中,求出BM、DM,再利用勾股定理即可解决问题.
【考点精析】掌握勾股定理的概念是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网