题目内容
【题目】阅读下面材料,并解决有关问题
我们知道:
|a|=
现在我们可以用这一结论来化解含有绝对值的代数式
如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1和x=2(称﹣1,2分别为|x+1|和|x﹣2|的零点值)
在实数范围内,零点值x=﹣1和x=2可将全体实数分成不重复且不遗漏的如下三种情况:
(1)x<﹣1(2)﹣1≤x<2(3)x≥2
从而化简代数式|x+1|+|x﹣2|,可分以下三种情况
(1)x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1
(2)﹣1≤x<2时,原式=x+1﹣(x﹣2)=3
(3)x≥2时,原式=x+1+x﹣2=2x﹣1
通过以上阅读,请你解决以下问题
(1)化简代数式|x+2|+|x﹣4|
(2)求|x﹣1|﹣4|x+1|的最大值.
【答案】(1)当x<﹣2时,|x+2|+|x﹣4|=﹣2x+2;当﹣2≤x<4时,|x+2|+|x﹣4|=6;当x≥4时,|x+2|+|x﹣4|=2x﹣2;(2)2.
【解析】
(1)分为x<﹣2、﹣2≤x<4、x≥4三种情况化简即可;
(2)分x<﹣1、﹣1≤x≤1、x>1分别化简,结合x的取值范围确定代数式值的范围,从而求出代数式的最大值.
解:(1)当x<﹣2时,|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;
当﹣2≤x<4时,|x+2|+|x﹣4|=x+2+4﹣x=6;
当x≥4时,|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2;
(2)当x<﹣1时,原式=3x+5<2,
当﹣1≤x≤1时,原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,
当x>1时,原式=﹣3x﹣5<﹣8,
则|x﹣1|﹣4|x+1|的最大值为2.
练习册系列答案
相关题目