题目内容
计算(﹣8m4n+12m3n2﹣4m2n3)÷(﹣4m2n)的结果等于( )
A. 2m2n﹣3mn+n2 B. 2n2﹣3mn2+n2 C. 2m2﹣3mn+n2 D. 2m2﹣3mn+n
一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为__________.
一犯罪分子正在两交叉公路间沿到两公路距离相等的一条小路上逃跑,埋伏在A、B两处的两名公安人员想在距A、B相等的距离处同时抓住这一罪犯.请你帮助公安人员在图中设计出抓捕点.
生物具有遗传多样性,遗传信息大多储存在DNA分子上一个DNA分子的直径约为,这个直径用科学记数法可表示为________cm.
下列乘法中,不能运用平方差公式进行计算的是( )
A.(x+a)(x﹣a) B.(a+b)(﹣a﹣b)
C.(﹣x﹣b)(x﹣b) D.(b+m) (m﹣b)
定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.
(1)如图,在损矩形ABCD中,∠ABC=∠ADC=90°,则该损矩形的直径是线段________.
(2)在损矩形ABCD内是否存在点O,使得A,B,C,D四个点都在以点O为圆心的同一个圆上?如果存在,请指出点O的具体位置.
△ABC的三边长分别为8,15,17,则△ABC的外接圆的半径为________.
如图, 在△ABC中,AC=3、AB=4、BC=5, P为BC上一动点,PG⊥AC于点G,PH⊥AB
于点H,M是GH的中点,P在运动过程中PM的最小值为( )
A. 2.4 B. 1.4
C. 1.3 D. 1.2
【答案】D
【解析】分析: 由AC=3、AB=4、BC=5,得AC2+AB2=BC2 ,则∠A=90°,再结合PG⊥AC,PH⊥AB,可证四边形AGPH是矩形;连接AP,可知当AP⊥BC时AP最短,结合矩形的两对角线相等和面积法,求出GH的值,
详解:∵AC=3、AB=4、BC=5,
∴AC2=9,AB2=16,BC2=25,
∴AC2+AB2=BC2 ,
∴∠A=90°.
∵PG⊥AC,PH⊥AB,
∴∠AGP=∠AHP=90° ,
∴四边形AGPH是矩形.
连接AP,
∴GH=AP.
∵当AP⊥BC时,AP最短,
∴3×4=5AP,
∴AP=,
∴PM的最小值为1.2.
故选D.
点睛: 本题考查了勾股定理的逆定理,矩形的判定与性质,垂线段最短,面积法求线段的长,需结合矩形的判定方法,矩形的性质以及三角形面积的知识求解;确定出点P的位置是解答本题的关键.
【题型】单选题【结束】18
计算:
(1) (2)
(3)
如图,在正方形网格中,一条圆弧经过,,三点,那么这条圆弧所在圆的圆心是( ).
A. 点 B. 点 C. 点 D. 点