题目内容
【题目】已知方程组甲由于看错了方程(1)中的a,得到方程组的解为 , 乙由于看错了方程(2)中的b,得到方程组的解为 , 若按正确的计算,求x+6y的值.
【答案】解:将x=﹣3,y=﹣1代入(2)得:﹣12+b=﹣2,即b=10;
将x=4,y=3代入(1)得:4a+3=15,即a=3,
方程组为 ,
(1)×10+(2)得:34x=148,即x=,
将x=代入(1)得:y=,
则x+6y=+=16.
【解析】将x=﹣3,y=﹣1代入(2)求出b的值,将x=4,y=3代入(1)求出a的值,进而确定出方程组的解,即可求出x+6y的值.
【考点精析】解答此题的关键在于理解二元一次方程的解的相关知识,掌握适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.
练习册系列答案
相关题目
【题目】一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)
车型 | 甲 | 乙 | 丙 |
汽车运载量(吨/辆) | 5 | 8 | 10 |
汽车运费(元/辆) | 400 | 500 | 600 |
(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?
(2)为了节约运费,该市政府可以调用甲、乙、丙三种车型参与运送,已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?
(3)求出那种方案的运费最省?最省是多少元.