题目内容
12、用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是( )
分析:正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°:若能,则说明能铺满;反之,则说明不能铺满.
解答:解:正八边形的每个内角为:180°-360°÷8=135°,
两个正八边形在一个顶点处的内角和为:2×135°=270°,
那么另一个多边形的内角度数为:360°-270°=90°,
∵正方形的每个内角和为90°,
∴另一个是正方形.
故选A.
两个正八边形在一个顶点处的内角和为:2×135°=270°,
那么另一个多边形的内角度数为:360°-270°=90°,
∵正方形的每个内角和为90°,
∴另一个是正方形.
故选A.
点评:两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.
练习册系列答案
相关题目