题目内容

如图,二次函数的图象与轴交于两点,与轴交于点,已知点(-1,0),点C(0,-2).
(1)求抛物线的函数解析式;
(2)试探究的外接圆的圆心位置,并求出圆心坐标;
(3)此抛物线上是否存在点P,使得以P、A、C、B为顶点的四边形为梯形.若存在,请写出所有符合条件的P点坐标;若不存在,请说明理由;
(4)若点是线段下方的抛物线上的一个动点,求面积的最大值以及此时点的坐标.

(1) (2) 外接圆的圆心为AB的中点,且坐标为(,0).(3) P1(3,-2)、P2(5,3)、P3(-5,18) (4) 点M(2,﹣3),△MBC面积最大值是4.

解析试题分析:(1)把点 (-1,0),点C(0,-2)代入解析式,即可求出a、c的值,从而二次函数的解析式可求;
(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.
(3)根据梯形的定义即可求出点P的坐标;
(4)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.
(1)将A(-1,0)、点C(0,-2).代入
求得: 
(2)∵A(-1,0)、C(0,-2);
∴OA=1,OC=2,OB=4,
即:OC2=OA•OB,又:OC⊥AB,
∴△OAC∽△OCB,得:∠OCA=∠OBC;
∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,
∴△ABC为直角三角形,AB为△ABC外接圆的直径;
外接圆的圆心为AB的中点,且坐标为(,0).
(3)共三个P1(3,-2)、P2(5,3)、P3(-5,18) 
(4)已求得:B(4,0)、C(0,-2),可得直线BC的解析式为:y=x-2;
设直线l∥BC,则该直线的解析式可表示为:y=x+b,
当直线l与抛物线只有一个交点时,可列方程:
x+b=x2-x-2,即:x2-2x-2-b=0,且△=0;
∴4-4×(-2-b)=0,即b=-4;
∴直线l:y=x-4.
所以点M即直线l和抛物线的唯一交点,有:

解得:
即 M(2,-3).
过M点作MN⊥x轴于N,
S△BMC=S梯形OCMN+S△MNB-S△OCB=×2×(2+3)+×2×3-×2×4=4.
∴点M(2,﹣3),△MBC面积最大值是4.
考点:二次函数综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网