题目内容
【题目】如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D,E是线段AC的中点,连接ED.
(1)求证:ED是⊙O切线.
(2)求线段AD的长度.
【答案】(1)见解析;(2)
【解析】
(1)由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE即可;
(2)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.
(1)证明:连接OD,DE,
∵DE是Rt△ADC的中线;
∴ED=EC,
∴∠EDC=∠ECD;
∵OC=OD,
∴∠ODC=∠OCD;
∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;
∴ED⊥OD,
∴ED与⊙O相切.
(2)在Rt△ACB中,
∵AC=3cm,BC=4cm,∠ACB=90°,
∴AB=5cm;
连接CD,∵BC为直径,
∴∠ADC=∠BDC=90°;
∵∠A=∠A,∠ADC=∠ACB,
∴Rt△ADC∽Rt△ACB;
∴,
∴.
练习册系列答案
相关题目