题目内容
方程2x2﹣6x+3=0较小的根为p,方程2x2﹣2x﹣1=0较大的根为q,则p+q等于( )
A. 3 B. 2 C. 1 D.
解方程:
在Rt△ABC中,BC=AC,∠ACB=90°,D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE,BF.
(1)当点D在线段AB上时(点D不与点A,B重合),如图23(a).
①请你将图形补充完整;
②线段BF,AD所在直线的位置关系为________,线段BF,AD的数量关系为________.
(2)当点D在线段AB的延长线上时,如图23(b).
在(1)中②问的结论是否仍然成立?如果成立,请进行证明;如果不成立,请说明理由.
已知等腰三角形的一腰为x,周长为20,则方程x2﹣12x+31=0的根为_____.
关于的一元二次方程的根的情况是( )
A. 有两不相等实数根 B. 有两相等实数根
C. 无实数根 D. 不能确定
阅读材料:数学课上,吴老师在求代数式x2﹣4x+5的最小值时,利用公式a2±2ab+b2=(a±b)2,对式子作如下变形:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,
因为(x﹣2)2≥0,
所以(x﹣2)2+1≥1,
当x=2时,(x﹣2)2+1=1,
因此(x﹣2)2+1有最小值1,即x2﹣4x+5的最小值为1.
通过阅读,解下列问题:
(1)代数式x2+6x+12的最小值为 ;
(2)求代数式﹣x2+2x+9的最大或最小值;
(3)试比较代数式3x2﹣2x与2x2+3x﹣7的大小,并说明理由.
方程x2+2x﹣1=0配方得到(x+m)2=2,则m=_____.
如图,已知∠COB=3∠AOC,OD平分∠AOB,且∠AOB=120°,求∠COD的度数.
(2017山东省东营市)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)求该班的人数;
(2)请把折线统计图补充完整;
(3)求扇形统计图中,网络文明部分对应的圆心角的度数;
(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.