题目内容
【题目】某物流公司的甲、乙两辆货车分别从相距300千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶1.5小时时甲车先到达配货站C地,此时两车相距30千米,甲车在C地用1小时配货,然后按原速度开往B地;乙车行驶2小时时也到C地,未停留继续开往A地。(友情提醒:画出线段图帮助分析)
(1)乙车的速度是 千米/小时,B、C两地的距离是 千米,A、C两地的距离是 千米;
(2)求甲车的速度及甲车到达B地所用的时间;
(3)乙车出发多长时间,两车相距150千米.
【答案】(1)60;120;180;(2)120;3.5;(3)小时或小时.
【解析】试题分析:(1)由题意可知,甲车2小时到达C地,休息了20分钟,乙车行驶2小时15分钟也到C地,这15分钟甲车未动,即乙车15分钟走了20千米,据此可求出乙车的速度,再根据速度求出B、C两地的距离和A、C两地的距离即可解答.
(2)根据A、C两地的距离和甲车到达配货站C地的时间可求出甲车的速度,再根据行程问题的关系式求出甲车到达B地所用的时间即可解答.注意要加上配货停留的1小时.
(3)此题分为两种情况,未相遇和相遇以后相距150千米,据此根据题意列出符合题意得方程即可解答.
试题解析:(1)60千米/时;120千米;180千米
(2)甲车的速度=180÷1.5=120千米/小时;
甲车到达B地所用的时间=300÷120+1=3.5小时.
(3)设乙车出发x小时,两车相距150千米,列方程得
300-(60+120)x=150或60x+120(x-1)=300+150
解得或
答:乙车出发或小时,两车相距150千米
【题目】(6分)小聪是个数学爱好者,他发现从1开始,连续几个奇数相加,和的变化规律如右表所示:
加数个数 | 连续奇数的和S |
1 | 1= |
2 | 1+3=22 |
3 | 1+3+5=32 |
4 | 1+3+5+7=42 |
5 | 1+3+5+7+9=52 |
n | … |
(1)如果n=7,则S的值为 ;
(2)求1+3+5+7+…+199的值;
(3)求13+15+17+…+79的值.