题目内容
【题目】如图示,在平面直角坐标系中,二次函数()交轴于,,在轴上有一点,连接.
(1)求二次函数的表达式;
(2)点是第二象限内的点抛物线上一动点
①求面积最大值并写出此时点的坐标;
②若,求此时点坐标;
(3)连接,点是线段上的动点.连接,把线段绕着点顺时针旋转至,点是点的对应点.当动点从点运动到点,则动点所经过的路径长等于______(直接写出答案)
【答案】(1);(2)①,点坐标为;②;(3)
【解析】
(1)根据点坐标代入解析式即可得解;
(2)①由A、E两点坐标得出直线AE解析式,设点坐标为,过点作轴交于点,则坐标为,然后构建面积与t的二次函数,即可得出面积最大值和点D的坐标;
②过点作,在中,由,,得出点M的坐标,进而得出直线ME的解析式,联立直线ME和二次函数,即可得出此时点D的坐标;
(3)根据题意,当点P在点C时,Q点坐标为(-6,6),当点P移动到点A时,Q′点坐标为(-4,-4),动点所经过的路径是直线QQ′,求出两点之间的距离即可得解.
(1)依题意得:,解得
∴
(2)①∵,
∴设直线AE为
将A、E代入,得
∴
∴直线
设点坐标为,其中
过点作轴交于点,则坐标为
∴
∴
即:
由函数知识可知,当时,,点坐标为
②设与相交于点
过点作,垂足为
在中,,,
设,则,
∴
∴
∴
∴
∴
∴
∴
∴(舍去),
当时,
∴
(3)当点P在点C时,Q点坐标为(-6,6),当点P移动到点A时,Q′点坐标为(-4,-4),如图所示:
∴动点所经过的路径是直线QQ′,
∴
故答案为.
【题目】我校2019年度“一中好声音“校园歌手比赛已正式拉开序幕,其中甲,乙两位同学的表现分外突出,现场A、B、C、D、E、F六位评委的打分情况以及随机抽取的50名同学的民意调查结果分别如下统计表和不完整的条形统计图:
A | B | C | D | E | F | |
甲 | 88 | m | 90 | 93 | 95 | 96 |
乙 | 89 | 92 | 90 | 97 | 94 | 93 |
(1)a= ,六位评委对乙同学所打分数的中位数是 ,并补全条形统计图;
(2)六位评委对甲同学所打分数的平均分为92分,则m= ;
(3)学校规定评分标准:去掉评委评分中最高和最低分,再算平均分,并将平均分与民意测评分按3:2计算最后得分,求甲、乙两位同学的得分,(民意测评分=“好”票数×2+“较好”票数×1+“一般”票数×0)
(4)现准备从甲、乙两位同学中选一位优秀同学代表重庆一中参加市歌手大赛,请问选哪位同学?并说明理由.
【题目】下表是2018年三月份某居民小区随机抽取20户居民的用水情况::
月用水量/吨 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
户数 | 2 | 4 | m | 4 | 3 | 0 | 1 |
(1)求出m= ,补充画出这20户家庭三月份用电量的条形统计图;
(2)据上表中有关信息,计算或找出下表中的统计量,并将结果填入表中:
统计量名称 | 众数 | 中位数 | 平均数 |
数据 |
|
|
|
(3)为了倡导“节约用水绿色环保”的意识,江赣市自来水公司实行“梯级用水、分类计费”,价格表如下:
月用水梯级标准 | Ⅰ级(30吨以内) | Ⅱ级(超过30吨的部分) |
单价(元/吨) | 2.4 | 4 |
如果该小区有500户家庭,根据以上数据,请估算该小区三月份有多少户家庭在Ⅰ级标准?
(4)按上表收费,如果某用户本月交水费120元,请问该用户本月用水多少吨?