题目内容

【题目】已知:如图,在ABCD中,AEBCCFAD,垂足分别为EFAECF分别与BD相交于点GH,联结AHCG

求证:四边形AGCH是平行四边形.

【答案】证明见解析.

【解析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;

法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.

证明:在ABCD中,AD∥BC,AB∥CD,

∵CF⊥AD,∴CF⊥BC,

∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,

∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,

∴∠AGB=∠DHC,

∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,

∴AG=CH,

∴四边形AGCH是平行四边形;

法2:连接AC,与BD相交于点O,

ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,

∴∠ABG=∠CDH,

∵CF⊥AD,AE⊥BC,

∴∠AEB=∠CFD=90°,

∴∠BAG=∠DCH,

∴△ABG≌CDH,

∴BG=DH,

∴BO﹣BG=DO﹣DH,

∴OG=OH,

∴四边形AGCH是平行四边形.

“点睛”此题考查了平行四边形的判定与性质,熟练掌握平式子变形的判定与性质是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网