ÌâÄ¿ÄÚÈÝ
ÏÈÔĶÁ£¬ÔÙÌî¿Õ½âÌ⣺
£¨1£©·½³Ì£ºx2+x-2=0µÄ¸ùÊÇ£ºx1=
£¨2£©·½³Ì2x2-7x+3=0µÄ¸ùÊÇ£ºx1=
£¬Ôòx1+x2=
£¬x1x2=
£¨3£©·½³Ìx2-4x-5=0µÄ¸ùÊÇ£ºx1=
£¨4£©Èç¹û¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0ÇÒa¡¢b¡¢cΪ³£Êý£©µÄÁ½¸ùΪx1£¬x2£¬¸ù¾ÝÒÔÉÏ£¨1£©£¨2£©£¨3£©ÄãÄÜ·ñ²Â³ö£ºx1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢cÓÐʲô¹Øϵ£¿Çëд³öÀ´ÄãµÄ²ÂÏ벢˵Ã÷ÀíÓÉ£®
£¨1£©·½³Ì£ºx2+x-2=0µÄ¸ùÊÇ£ºx1=
2
2
£¬x2=1
1
£¬Ôòx1+x2=3
3
£¬x1x2=2
2
£¨2£©·½³Ì2x2-7x+3=0µÄ¸ùÊÇ£ºx1=
3
3
£¬x2=1 |
2 |
1 |
2 |
7 |
2 |
7 |
2 |
3 |
2 |
3 |
2 |
£¨3£©·½³Ìx2-4x-5=0µÄ¸ùÊÇ£ºx1=
5
5
£¬x2=-1
-1
£¬Ôòx1+x2=4
4
£¬x1x2=-5
-5
£¨4£©Èç¹û¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0ÇÒa¡¢b¡¢cΪ³£Êý£©µÄÁ½¸ùΪx1£¬x2£¬¸ù¾ÝÒÔÉÏ£¨1£©£¨2£©£¨3£©ÄãÄÜ·ñ²Â³ö£ºx1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢cÓÐʲô¹Øϵ£¿Çëд³öÀ´ÄãµÄ²ÂÏ벢˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÀûÓÃÒòʽ·Ö½â·¨Çó³ö·½³ÌµÄ½â£¬Çó³öÁ½¸ùÖ®ºÍÓëÁ½¸ùÖ®»ý¼´¿É£»
£¨2£©ÀûÓÃÒòʽ·Ö½â·¨Çó³ö·½³ÌµÄ½â£¬Çó³öÁ½¸ùÖ®ºÍÓëÁ½¸ùÖ®»ý¼´¿É£»
£¨3£©ÀûÓÃÒòʽ·Ö½â·¨Çó³ö·½³ÌµÄ½â£¬Çó³öÁ½¸ùÖ®ºÍÓëÁ½¸ùÖ®»ý¼´¿É£»
£¨4£©¸ù¾ÝÒÔÉÏ£¨1£©£¨2£©£¨3£©²Â³öx1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢c¹Øϵʽ£¬ÀûÓÃÇó¸ù¹«Ê½ÑéÖ¤¼´¿É£®
£¨2£©ÀûÓÃÒòʽ·Ö½â·¨Çó³ö·½³ÌµÄ½â£¬Çó³öÁ½¸ùÖ®ºÍÓëÁ½¸ùÖ®»ý¼´¿É£»
£¨3£©ÀûÓÃÒòʽ·Ö½â·¨Çó³ö·½³ÌµÄ½â£¬Çó³öÁ½¸ùÖ®ºÍÓëÁ½¸ùÖ®»ý¼´¿É£»
£¨4£©¸ù¾ÝÒÔÉÏ£¨1£©£¨2£©£¨3£©²Â³öx1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢c¹Øϵʽ£¬ÀûÓÃÇó¸ù¹«Ê½ÑéÖ¤¼´¿É£®
½â´ð£º½â£º£¨1£©x1=-2£¬x2=1£¬x1+x2=-1£¬x1x2=-2£»
£¨2£©x1=3£¬x2=
£¬x1+x2=
£¬x1x2=
£»
£¨3£©x1=5£¬x2=-1£¬x1+x2=4£¬x1x2=-5£»
£¨4£©x1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢cµÄ¹ØϵÊÇ£ºx1+x2=-
£¬x1+x2=
£¬
ÀíÓÉÊÇax2+bx+c=0£¨a¡Ù0£©ÓÐÁ½¸ùΪ
x1=
£¬x2=
£¬
¡àx1+x2=
=-
£¬x1x2=
=
£®
¹Ê´ð°¸Îª£º£¨1£©2£¬1£¬3£¬2£»£¨2£©3£¬
£¬
£¬
£»£¨3£©5£¬-1£¬4£¬-5£®
£¨2£©x1=3£¬x2=
1 |
2 |
7 |
2 |
3 |
2 |
£¨3£©x1=5£¬x2=-1£¬x1+x2=4£¬x1x2=-5£»
£¨4£©x1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢cµÄ¹ØϵÊÇ£ºx1+x2=-
b |
a |
c |
a |
ÀíÓÉÊÇax2+bx+c=0£¨a¡Ù0£©ÓÐÁ½¸ùΪ
x1=
-b+
| ||
2a |
-b-
| ||
2a |
¡àx1+x2=
-2b |
2a |
b |
a |
b2-(b2-4ac) |
4a2 |
c |
a |
¹Ê´ð°¸Îª£º£¨1£©2£¬1£¬3£¬2£»£¨2£©3£¬
1 |
2 |
7 |
2 |
3 |
2 |
µãÆÀ£º´ËÌ⿼²éÁ˽âÒ»Ôª¶þ´Î·½³Ì-Òòʽ·Ö½â·¨£¬ÀûÓô˷½·¨½â·½³Ìʱ£¬Ê×ÏȽ«·½³ÌÓұ߻¯Îª0£¬×ó±ß»¯Îª»ýµÄÐÎʽ£¬È»ºóÀûÓÃÁ½ÊýÏà³Ë»ýΪ0£¬Á½ÒòʽÖÐÖÁÉÙÓÐÒ»¸öΪ0ת»¯ÎªÁ½¸öÒ»ÔªÒ»´Î·½³ÌÀ´Çó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿