题目内容
二次函数y=x2﹣4x+5的最小值是
A.﹣1 | B.1 | C.3 | D.5 |
B
解析试题分析:利用配方法将二次函数的一般式y=x2﹣4x+5变形为顶点式,再根据二次函数的性质即可求出其最小值:
∵配方得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,
∴当x=2时,二次函数y=x2﹣4x+5取得最小值为1。
故选B。
练习册系列答案
相关题目
已知二次函数,则下列说法正确的是( )
A.y有最小值0,有最大值-3 |
B.y有最小值-3,无最大值 |
C.y有最小值-1,有最大值-3 |
D.y有最小值-3,有最大值0 |