题目内容
【题目】如图,在△ABC中,AB=AC,AD⊥BC于点D,E是AB上一点,以CE为直径的⊙O交BC于点F,连接DO,且∠DOC=90°.
(1)求证:AB是⊙O的切线;
(2)若DF=2,DC=6,求BE的长.
【答案】(1)详见解析;(2)BE=.
【解析】
(1)根据三角形中位线定理得到OD∥BE,根据平行线的性质、切线的判定定理证明;
(2)连接EF、ED,根据等腰三角形的性质求出BF,根据勾股定理求出EF,根据勾股定理计算,得到答案.
(1)证明:∵AB=AC,AD⊥BC,
∴CD=DB,又CO=OE,
∴OD∥BE,
∴∠CEB=∠DOC=90°,
∴CE⊥AB,
∴AB是⊙O的切线;
(2)解:连接EF、ED,
∵BD=CD=6,
∴BF=BD﹣DF=4,
∵CO=OE,∠DOC=90°,
∴DE=DC=6,
∵CE为⊙O的直径,
∴∠EFC=90°,
∴EF= =4 ,
∴BE= =4..
练习册系列答案
相关题目