题目内容

【题目】如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是(

A.﹣2<m< B.﹣3<m<﹣

C.﹣3<m<﹣2 D.﹣3<m<﹣

【答案】D

析】

试题分析:令y=﹣2x2+8x﹣6=0,

即x2﹣4x+3=0,

解得x=1或3,

则点A(1,0),B(3,0),

由于将C1向右平移2个长度单位得C2

则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),

当y=x+m1与C2相切时,

令y=x+m1=y=﹣2(x﹣4)2+2,

即2x2﹣15x+30+m1=0,

△=﹣8m1﹣15=0,

解得m1=﹣

当y=x+m2过点B时,

即0=3+m2

m2=﹣3,

当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,

故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网