题目内容

【题目】如果,正方形ABCD的边长为2cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q,若PQ=AE,则PD等于(

A. cm或cm B. cm C.cm或cm D.cm或cm

【答案】D

【解析】

试题分析:根据题意画出图形,过P作PN⊥BC,交BC于点N,

∵四边形ABCD为正方形,

∴AD=DC=PN,

在Rt△ADE中,∠DAE=30°,AD=2cm,

∴tan30°=,即DE=cm,

根据勾股定理得:AE==cm,

∵M为AE的中点,

∴AM=AE=cm,

在Rt△ADE和Rt△PNQ中,

∴Rt△ADE≌Rt△PNQ(HL),

∴DE=NQ,∠DAE=∠NPQ=30°,

∵PN∥DC,

∴∠PFA=∠DEA=60°,

∴∠PMF=90°,即PM⊥AF,

在Rt△AMP中,∠MAP=30°,

∴AP= cm,

所以PD=2﹣=

故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网