题目内容
【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点P,根据下列条件,求∠BPC的度数.
(1)若∠ABC=50°,∠ACB=60°,则∠BPC= ;
(2)若∠ABC+∠ACB=120°,则∠BPC= ;
(3)若∠A=80°,则∠BPC= ;
(4)从以上的计算中,你能发现已知∠A,求∠BPC的公式是:∠BPC= (提示:用∠A表示).
【答案】(1)125°;(2)120°;(3)130°;(4)90°+∠A.
【解析】
(1)由∠ABC=50°,∠ACB=60°,∠2+∠4=25°+30°=55°,在△BCP中,由三角形内角和为180°可得答案;
(2)同理,由ABC+∠ACB=120°,∠ABC和∠ACB的平分线相交于点P,可得∠2+∠4=×120°=60°,在△BCP中,由三角形内角和为180°可得答案;
(3) A=80°,可得ABC+∠ACB=100°,∠2+∠4=×100°=50°,可得∠BPC的度数;
(4)ABC+∠ACB=180°﹣∠A,∠ABC和∠ACB的平分线相交于点P,可得∠2+∠4=×(180°﹣∠A),在△BCP中,∠P=180°﹣×(180°﹣∠A)=90°+∠A
解:(1)∵∠ABC=50°,∠ACB=60°,∠ABC和∠ACB的平分线相交于点P,
∴∠2+∠4=25°+30°=55°,
∴△BCP中,∠P=180°﹣55°=125°,
故答案为:125°;
(2)∵∠ABC+∠ACB=120°,∠ABC和∠ACB的平分线相交于点P,
∴∠2+∠4=×120°=60°,
∴△BCP中,∠P=180°﹣60°=120°,
故答案为:120°;
(3)∵∠A=80°,
∴∠ABC+∠ACB=100°,
∠ABC和∠ACB的平分线相交于点P,
∴∠2+∠4=×100°=50°,
∴△BCP中,∠P=180°﹣50°=130°,
故答案为:130°;
(4))∵∠ABC+∠ACB=180°﹣∠A,∠ABC和∠ACB的平分线相交于点P,
∴∠2+∠4=×(180°﹣∠A),
∴△BCP中,∠P=180°﹣×(180°﹣∠A)=90°+∠A.
故答案为:90°+∠A.