题目内容
【题目】如图,中,已知,,于D,,,如何求AD的长呢?
心怡同学灵活运用对称知识,将图形进行翻折变换,巧妙地解答了此题,
请按照她的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出、的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;
(2)设,利用勾股定理,建立关于x的方程模型,求出x的值.
【答案】(1)见详解;(2)18
【解析】
(1)先根据△ABD≌△ABE,△ACD≌△ACF,得出∠EAF=90°;再根据对称的性质得到AE=AF,从而说明四边形AEGF是正方形;
(2)利用勾股定理,建立关于x的方程模型(x-6)2+(x-9)2=152,求出AD=x=6.
解:(1)证明:由题意可得:△ABD≌△ABE,△ACD≌△ACF
∴∠DAB=∠EAB,∠DAC=∠FAC,又∠BAC=45°
∴∠EAF=90°
又∵AD⊥BC
∴∠E=∠ADB=90°,∠F=∠ADC=90°
又∵AE=AD,AF=AD
∴AE=AF
∴四边形AEGF是正方形
(2)解:设AD=x,则AE=EG=GF=x
∵BD=6,DC=9
∴BE=6,CF=9
∴BG=x-6,CG=x-9
在Rt△BGC中,BG2+CG2=BC2
∴(x-6)2+(x-9)2=152
∴(x-6)2+(x-9)2=152,化简得,x2-15x-54=0,整理得(x-18)(x+3)=0
解得x1=18,x2=-3(舍去)
所以AD=x=18
练习册系列答案
相关题目