题目内容

【题目】如图,AB是⊙O的一条弦,C是⊙O上一动点且∠ACB=45°,E、F分别是AC、BC的中点,直线EF与⊙O交于点G、H.若⊙O的半径为2,则GE+FH的最大值为

【答案】4﹣
【解析】连接OA,OB,

∵∠ACB=45°,∴∠AOB=90°.∵OA=OB,∴△AOB是等腰直角三角形,

∴AB=2 ,当GH为⊙O的直径时,GE+FH有最大值.∵点E、F分别为AC、BC的中点,

∴EF= AB= ,∴GE+FH=GH﹣EF=4﹣

故答案为:4﹣

根据圆周角和圆心角的关系,求出∠AOB的度数,当GH为⊙O的直径时,GE+FH有最大值;由点E、F分别为AC、BC的中点,根据三角形中位线定理,求出EF的值,得到GE+FH的最大值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网