题目内容

【题目】如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )

A.5
B.10
C.10
D.15

【答案】B
【解析】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示.

∵AE=CG,BE=BE′,

∴E′G′=AB=10,

∵GG′=AD=5,

∴E′G= =5

∴C四边形EFGH=2E′G=10

所以答案是:B.


【考点精析】关于本题考查的线段的基本性质和矩形的性质,需要了解线段公理:所有连接两点的线中,线段最短.也可简单说成:两点之间线段最短;连接两点的线段的长度,叫做这两点的距离;线段的大小关系和它们的长度的大小关系是一致的;矩形的四个角都是直角,矩形的对角线相等才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网